What is a Function?

Definitions:

- Relations - a collection (set) of ordered pairs. The first entry of an ordered pair is called the abscissa the second entry of the ordered pair is call the ordinate.
- Domain - the set of abscissas of the relation.
- Range - the set of ordinates of the relation.
- Functions - a special type of relation in which a member of the domain is paired with one and only one member of the range.

A Function Machine

A useful analogy to describe a function is to think of it as a machine.

The Input of the function is the set of valid members of the domain. Once a member of the domain enters the machine a rule (often an Algebraic formula) controls what is to be done with the input. As an example, the rule might take the input and add three to it, as in $x+3$, where x is the input. Once the rule has been applied to the input the machine sends (maps) the result to output. The output then becomes members of the range of the function. It is important to note that if the
same input were re-entered into the machine, we would expect that the rule would deliver the same result (output) as before. If it does not, then it is not a function!

Consider the following relation:

$$
f=\left\{(2,5),(-4,-1),\left(\frac{3}{4}, \frac{15}{4}\right)\right\}
$$

The domain (or x coordinates) $=\left\{2,-4, \frac{3}{4}\right\}$ and the range (y coordinates) $=$ $\left\{5,-1, \frac{15}{4}\right\}$. Thus the members of the domain are mapped to one and only one member of the range by the rule: $x+3$.

Therefore, we have the following mapping of a function f.

$$
\begin{aligned}
& f \mid 2 \rightarrow 5 \\
& f \mid-4 \rightarrow-1 \\
& f \left\lvert\, \frac{3}{4} \rightarrow \frac{15}{4}\right.
\end{aligned}
$$

Function Notations

In the above notation of the function \boldsymbol{f}, members of the domain are mapped (sent) to members of the range. As an example, in words, the function f maps (sends) $\mathbf{2}$ to 5. More generally we could state the function as:

$$
\boldsymbol{f} \mid \boldsymbol{x} \rightarrow \boldsymbol{x}+\mathbf{3} \text { - The function } f \text { maps } x \text { to } x+3
$$

Though the above function notation accurately describes a function, a more modern notation is often used by mathematicians, as shown below:

$$
f(x)=x+3-\text { In words, } f \text { of } x \text { is equal to } x+3
$$

Restrictions on the Domains of Functions

In the function $\boldsymbol{f}(\boldsymbol{x})=\boldsymbol{x}+\mathbf{3}$ the domain is all the valid x inputs of f. By valid we mean is there a value that x could take on that would not yield an output? For this example, x can be any real number because the function simply adds three units to
whatever value of x we choose. So the domain can be expressed in Set-Builder Notation as $\{\boldsymbol{x} \mid \boldsymbol{x} \in \mathbb{R}\}$ or in Interval Notation as $(-\infty, \infty)$.

However, consider the function $\boldsymbol{g}(\boldsymbol{x})=\frac{\mathbf{1}}{\boldsymbol{x}}$ here x can take on any real number with the exception of zero! Why? Because if zero is the input for g, then $\boldsymbol{g}(\mathbf{0})=\frac{\mathbf{1}}{\mathbf{0}}$ which is undefined, by definition of division by zero! Therefore, the domain of g is $\{\boldsymbol{x} \in \mathbb{R} \mid \boldsymbol{x} \neq \mathbf{0}\}$ or $(-\infty, \mathbf{0}) \cup(\mathbf{0}, \infty)$.

In conclusion, restrictions on the domains are determined by the particular rule of the function.

Tests to Determine if a Relation is a Function

1. If the relation is expressed as ordered pairs, then examine all the abscissas (x coordinates) for repeats. If a repeat exists, then both output values must be the same. If the relation maps to a given input to more than one output, then the relation is not a function.
$f \mid 5 \rightarrow 8$ and $f \mid 5 \rightarrow-3$
2. Vertical Line Test - when a relation is graphed a vertical line is drawn through the graph. If the vertical line only intersects the graph once then the relation is a function. If the vertical line intersects the graph more than once then the relation in not a function.
